

Effective from Session: 2020-	Effective from Session: 2020-2021								
Course Code	BS501	Title of the Course	rDNA Technology	L	Т	Р	C		
Year	П	Semester	III	3	1	0	4		
Pre-Requisite	UG in Biological Science	in Biological Science Co-requisite							
Course Objectives	The objective of this course	The objective of this course is to give students a basic understanding of various components required for gene cloning							

Course C	Course Outcomes						
CO1	Know the role of the several molecular tools applied in gene cloning for construction of recombinant molecules (DNA and Vectors).						
CO2	Several techniques involved in production of CDNA and Genomic library and primer synthesis						
CO3	Classification and properties of an ideal plasmid, plasmid as cloning vector						
CO4	Different types of cloning vectors used in genetic engineering						
CO5	Different types of screening and selection procedure of identifying recombinants.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Cloning Procedure	Outline of cloning procedure, Host controlled restriction and modification: Restriction endonucleases and cognate methylases, Class I, II & III restriction enzymes, Nomenclature, Recognition sites, Variants of Type II Restriction enzyme, Unit of restriction enzymes, Restriction digestion: Partial and Complete Digestion, Star activity, Restriction mapping, Formation of chimeric DNA, Homopolymer tailing, Synthetic Linkers, Adaptors and DNA ligase; Filling in and Trimming back; Significance of T4 DNA polymerase & Klenow Fragment, Alkaline phosphatase, Reverse transcriptase in cloning.	8	CO-1
2	RNA/DNA synthesis and labelling	Purification of mRNAs; mRNA abundance; Synthesis of cDNA:, Various methods for first and second strand DNA synthesis; cDNA and Genomic library construction; Chemical synthesis of oligonucleotides by Phosphoramidite and Photolithographic methods; Preparation of probe DNA by radioactive and nonradioactive labeling methods: Nick translation, End filling, Random primer methods	8	CO-2
3	Plasmids	Plasmids: Plasmid classification on basis of phenotypic traits: Cryptic, Fertility, Resistance, Bacteriocinogenic, Degradative, Virulence; Conjugative / non conjugative plasmids; Relaxed and stringent control of copy number; Plasmid incompatibility; Plasmid host range, Mobilizable plasmids and Triparental mating; Plasmid as cloning vector (recombinant plasmids): Properties of ideal plasmid cloning vectors, pBR322, pUC & pGEM3Z series, , Binary and Cointegrate vectors derived from Ti plasmid of Agrobacterium; Transcriptional and translational fusion vectors; Fusion proteins; Selectable markers; Reporter genes.	8	CO-3
4	Phage as cloning vector	Phage as a cloning vector: Advantage of using phage lambda vector, Genome map of phage lambda, In vitro packaging, Insertional and replacement vectors: λgt10, λgt11, λEMBL3, λEMBL4, λEMBL3A, λEMBL4A; Cosmid vectors; M13 phage and its role in single stranded DNA production, M13 series of vectors; Phagemids; Yeast as cloning vector: Basic principles of development of yeast vectors, 2μ plasmid, YEP, YRP YCP, YIP; Artificial chromosomes: YACs, BACs and PACs	8	CO-4
5	Screening and selection of recombinants	Basic techniques in mammalian cell culture; Cell culture media; Serum free media; maintenance of the culture and cell lines; Cloning in mammalian cells; transgenics, viral v Screening and selection of recombinants: Functional (genetic) complementation (Blue-white screening, Red-white screening), Nutritional complementation, Gain of function, Colony hybridization, Plaque hybridization, Southern blotting and hybridization, Dot blot, Zoo blot, Plus-Minus screening, Northern blotting, Immunological screening, Western blotting, South-Western blotting, North-Western blotting, HART, HAT.	8	CO-5
Refere	nce Books:			
1.	Genetic Engineer	ing Rastogi & Pathak Brown, T.A.		
2.	Freifelder, DM "I	Molecular Biology".		
	Brown, TA "Gen			
4.	Watson, JD "Mol	ecular Biology of the cell"		
5.	Gene cloning: An	introduction" Old & Primrose "Principles of Gene Manipulation		

e-Learning Source:

	Course A	rticulation	Matrix: (M	apping of	COs with P	Os and PSOs)	_	-		_		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PSO1	PSO2	PSO3	PS04
CO1	3	1				3		1	1		3	
CO2	3	1				3		1	2			
CO3	3	1				3		1	2		3	
CO4	3	1				3		1	1		3	
CO5	3	1				3		1	1		3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session	Effective from Session: 2020-21									
Course Code	BS502	Title of the Course	Bioprocess Engineering & Industrial Biotechnology	L	Т	Р	C			
Year	П	Semester	III	3	1	0	4			
Pre-Requisite	UG in Biological Science	Co-requisite								
Course Objectives	Course Objectives This course is designed to acquire knowledge on basics of thermodynamics of reactor systems with special emphasis on bioreactor desi									
Course Objectives	operation, flow patterns, and	operation, flow patterns, and analysis of enzyme kinetics in biochemical engineering reactions along with downstream processing.								

	Course Outcomes
CO1	Learn about engineering calculations. Know different principles and concepts governing Fluid flow in a reactor system.
CO2	Students will be able to apply mass and energy balances to calculate the concentration of different gases in the fermenter off-gas, amount of reactant used,
	amount of oxygen etc.
CO3	Understand the techniques used for isolation and purification of desired products.
CO4	Operate and optimize the factors affecting fermentation for producing industrial products.
CO5	Treat the solid waste and effluent treatment.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1	SI Units	SI units; Dimension analysis; Fluid flow; Fluid statics; Bernoulli's equations.	8	CO-1			
2	Mass and energy balance in biological processes, Heat transfer	ce in biological coefficient; Boiling & evaporation; Heat exchanger design. sses, Heat Coefficient; Boiling & evaporation; Heat exchanger design.					
3	Screening and strain improvement	Isolation, maintenance and preservation of industrial strains. Strain improvement, screening and selection of industrially important microbes. Media for Industrial Fermentation, sterilization.	8	CO-3			
4	Design and analysis of fermenter; Downstream Processing	Design and analysis of fermenter; Types of fermenters, evaluation of fermentation parameters, Downstream Processing: Filtration, centrifugation, cell disruption, extraction, drying, crystallization and characterization. Large scale production and commercial applications of enzymes: proteases and amylases; solvents: acetic acid, ethanol, aceto-butanol.	8	CO-4			
5	Applied microbial technology	8	CO-5				
Reference	ce Books:						
1.	. Doran, PM "Bioprocess	Engineering Principles".					
	Pirt, SJ "Principles of MiTechnology".	crobe and Cell Cultivation" Whitaker "principles of Fermentation					
4.	. Bailey & Ollis "Biochem	ical Engineering Fundamentals".					
	 Moo – Young "Comprehe Industrial Microbiology" 	ensive Biotechnology" Cruger & Cruger "Biotechnology: A text book of .					
7.	. Prescott & Dunn "Indust	rial Microbiology".					
8.	. Bruce Rittman Perry L. M	AcCarty "Environmental Biotechnology: Principles and Applications".					
e-Lear	ning Source:						

PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1				2		1	3			
CO2	3	1				2		1	3	2	2	
CO3	3	1				2		1		3	3	
CO4	3	1				2	3	1		3	3	
CO5	3	1				2	1	2		2	3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2021-2022							
Course Code	BS503	Title of the Course	Immunology	L	Т	Р	C
Year	П	Semester	III	3	1	0	4
Pre-Requisite	UG in Biological Science	Co-requisite	Biotechnology				
Course Objectives	system and their role in imm hyper sensitivity, compleme	nune protection and application system, and vaccination	h detailed understanding of historical aspects of immunology, d ation of immunological techniques. The course will provide know a etc. One of the major goals of this course is to provide basic un as and non- infectious diseases i.e. cancer, diabetes, neurological	vledge derstar	about au nding of	ıtoimmu	nity,

	Course Outcomes
CO1	Understand the fundamentals of immune system
CO2	Understand antigen-antibody interactions and various immunological techniques based on these interactions.
CO3	Understand the mechanism of generation of diversity in immune response
CO4	Understand the Differentiation and activation of B and T lymphocytes, antigen presentation, and significance of MHC.
CO5	Students will gain knowledge about the importance of complement, tolerance and hyperactivation of immune response.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fundamentals of Immunology	Fundamentals of Immunology: Cells and organs of immunity: Memory, specificity, diversity, self vs. non-self-discrimination, Structure of primary and secondary lymphoid organs, Cell mediated vs. humoral immunity, T and B-lymphocytes; Nature of antigen and antibody: Antigen vs. Immunogen, Structure of antibody: constant and variable regions, Fab and Fc; isotype, allotype and idiotype; Abzymes.	8	CO-1
2	Antigen-antibody interactions	Antigen-antibody interactions and its measurement: Direct binding assays, Agglutination and precipitation, radioimmunoassay and ELISA, fluorescence analysis, Hybridoma technology, applications of monoclonal antibodies in biomedical research, clinical diagnosis and treatment	8	CO-2
3	Generation of diversity in the immune response	Generation of diversity in the immune response: Clonal selection theory-concept of antigen specific receptors, genes encoding antigen specific receptors on T and B-lymphocytes, genetic rearrangement, class switch, Comparison of receptors and B and T lymphocytes	8	CO-3
4	Differentiation of B and T lymphocyte	Differentiation of B and T lymphocyte. Activation of T cells and B cells by antigen: Antigen processing, Antigen presentation to T cells, Products and factors released by T cell activation-interleukins, interferons, B cell activating factors, T cell and B cell interactions leading to antibody synthesis. Central role of major histocompatibility complex (MHC), genes and products in immune response: T cell recognition of antigen and MHC products, Structure of MHC gene complex and its products polymorphism of MHC gene products, Associated MHC functions-allograft, graft vs. host and mixed leucocyte responses.	8	CO-4
5	Tolerance vs. activation of immune response metabolism	Tolerance vs. activation of immune response. Complement- components of classical and alternative pathways. Hypersensitivity: Types I, II, III and IV responses. Autoimmunity.	8	CO-5
Referenc	ee Books:			
1.	Coleman, R.M, "Fund	amental Immunology"		
2.	Richard A. Goldsby T	homas J. Kindt Janis Kuby Barbara A. Osborne "Immunology".		
3.	Peter Parkham Peter P	arham "The Immune System".		
4.	Abul K Abbas, Andrey	w H. Lichtman, Abdul K. Abbas, Jordan S. Pober "Cellular & Molecular Immunology"		
e-Lear	ning Source:			

Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO5 PO1 PO2 PO3 PO4 PO6 PO7 PO8 PSO1 PSO2 PSO3 PSO4 CO 3 CO1 2 1 3 2 3 CO2 2 3 2 3 1 3 3 CO3 3 1 3 1 3 2 CO4 3 3 3 2 1 1 C05 3 2 3 1 3 1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Sign & Seal of HoD

	Effective from Session: 2023-24									
	Course Code BS504		Title of the Course	Advanced Molecular Techniques	L	Т	Р	C		
	Year	2	Semester	III	3	1	0	4		
	Pre-Requisite	UG in Biological Science	Co-requisite							
Course Objectives To develop in students the understanding about advanced techniques used in molecular biology and biotechnology and the applications.										

	Course Outcomes
CO1	The students will be able to explain Polymerase chain reaction (PCR), its modifications and application in different areas.
CO2	The students will be able to Compare various methods of gene silencing in plants and animals.
CO3	The students will be able to Describe the principle and application of first generation and next generation sequencing technologies.
CO4	The students will be able to Compare various types of molecular markers and their pros and cons. Interpret the mechanism of protein-protein and protein-DNA
	interaction.
CO5	The students will be able to Explain the principle, instrumentation, and application of various methods gene transfer in plants and animals.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Principle & applications of PCR	Principle and variants of PCR; RACE, DD-RTPCR, Degenerate PCR, TA cloning, Realtime PCR, Scorpion PCR, Site Directed Mutagenesis: oligonucleotide directed, PCR based Mutagenesis, Error prone PCR.	8	CO-1
2	Gene silencing	Antisense RNA technique, Sense co-suppression in plants and animals, RNAi, in gene silencing, ribozymes. Zinc Finger Nuclease (ZFN) Technology, Transcription activator-like effector nuclease (TALEN) Technology, Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology	8	CO-2
3	DNA and RNA sequencing techniques	Sanger method, Maxam and Gilbert procedure, automated DNA sequencing, Pyrosequencing; High throughput Sequencing (Illumina/Solexa, Ion Torrent, Pacific Bioscience and Nanopore), shot gun cloning, clone contig cloning, Microarray.	8	CO-3
4	Molecular Markers	RFLP, RAPD, AFLP, SCAR, STS, microsatellites, SSCP, QTL, SNP, Yeast two-hybrid system, DNase I foot printing, Electrophoretic Mobility Shift Assay (EMSA), Protein Microarray.	8	CO-4
5	Introduction of DNA into living cells	Overview of the methods for introduction of DNA into living cells: Chemical transformation, microprojectile bombardment, electroporation, and microinjection.	8	CO-5
Refere	nce Books:			
1. I	Brown, TA (2020) Gene Clo	ning and DNA Analysis: An Introduction, 8th edition. John Wiley & Sons		
2. 0	Old & Primrose (1980). Prin	ciples of Gene Manipulation: An introduction to Genetic Engineering, University of California Press		
3. J	lose B. Cibelli Robert P. Lar	za Keith Cambell Michasel D. West "Principles of Cloning"		
4. /	Adrian Slater, Nigel W. Scot	t, Mark R. Fowler "Plant Biotechnology: The Genetic Manipulation of Plants"		
5. I	Richard A. Dixon Robert A.	Gonzales "Plant Cell Culture: A Practical Approach"		
6. 5	S.H. Mantell, J.A. Matthews	R.A. McKee "Principles of Plant Biotechnology: An Introduction to Genetic Engineering in Plants"		
7. 4	Angela Stafford Graham Wa	rren "Plant Cell and Tissue Culture (Biotechnology Series)"		
8. I	Rastogi & Pathak (2009). Ge	netic Engineering, Oxford University Press.		
e-Lea	arning Source:			
	-			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4				
CO1	3	1			2	3		1	1		3					
CO2	3	1			2	3		1	1		3					
CO3	3	1			2	3		1		3	3					
CO4	3	1			2	3		1	1		3					
CO5	3	1			2	3		1			3					

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21											
Course Code	BS505	Title of the	CELL BIOLOGY	L	Т	Р	С				
		Course									
Year	II	Semester	III	3	1	0	4				
Pre-Requisite	UG in Biological Science Co-requisite										
Course Objectives This course imparts in depth knowledge of cell structure, functions and cellular processes including the signaling pathways involved in growth and development. Also the course connects the cellular functioning with the application of technology and molecular genetics, enabling the students to explore and identify novel research leads for the greatest benefit of mankind.											

	Course Outcomes
CO1	Students will understand the structures and purposes of basic components (membranes and organelles) of prokaryotic and eukaryotic cells, as well astransport
	of molecules and ions across cells.
CO2	Students will understand cellular components underlying cell division and cell cycle.
CO3	Students will learn about cell communication and signaling through distinct signaling pathways that will help them to discover novel therapeutic targets/agents.
CO4	Students will understand pathways and mechanisms of intracellular protein targeting
CO5	They will be able to understand the procedure of RDT based technologies cell culture and their various applications for humankind.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Ultrastructure and Organization of eukaryotic cell	Ultrastructure and Organization of eukaryotic cell (Cell wall, nucleus, mitochondria, chloroplast, endoplasmic reticulum, microsomes, Golgi apparatus, lysosomes & peroxisomes): Structural organization of Cytoskeleton (Microtubules, Microfilaments, actins etc.) actin-myosin system intermediate filaments and Dynein activator complex; Structure and functions of cell membrane, Transport across cell membrane: Diffusion, Facilitated diffusion, Active transport.	8	CO-1
2	Cell division and cellcycle	Mitosis and Meiosis; Cell cycle: Check points, role of cyclin and cyclin dependentkinases in its regulation, programmed cell death, aging and senescence.	8	CO-2
3	Cell communication and signaling	Cell - cell and cell – extracellular matrix interactions: Plasmodesmata, Gap junction, Tight junction, Adherens, Cohesin, Elastin, Collagen, Fibronectins, Laminins, Integrins; Basics of signal transduction: Role of calcium, cAMP, G-protein, inositol phosphates, phospholipases and protein kinases in signal transduction. Receptor tyrosine kinase and RAS, MAP kinase pathways.	8	CO-3
4	Protein traffic in cells	Protein sorting and signal sequences; protein translocation in ER and vesicular transport to Golgi, lysosomes and plasma membrane; protein import into nuclei, mitochondria, chloroplasts and peroxisomes.	8	CO-4
5	Applied Cell Biology	Basic techniques in mammalian cell culture; Cell culture media; Serum free media; maintenance of the culture and cell lines; Cloning in mammalian cells; transgenics, viral vectors, Stem cell and their applications, gene knockout technology.	8	CO-5
Referen	ce Books:			
1. Rober	rts, Peter Walter "Essential	Cell Biology"		
2. Baltin	nore "Molecular Cell Biolo	ogy"		
3. Bruce	e Alberts, Alexander Johnso	on, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter		
4. "Mol	ecular Biology of the Cell"			
5. Lodis	sh H, Baltimore D, Berk A,	Zipursky SL, Matsudaira P, Darnell J. (1995). Molecular cell		
e-Learn	ing Source:			

				Cour	se Articulat	ion Matrix: (M	apping of (COs with P	Os and PSOs)		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4													
CO	101	102	105	101	105	100	10/	100	1501	1502	1505	1501													
CO1	3	1				1			3	2															
CO2	3	1				2			3	2															
CO3	3	1				2			3	2															
CO4	3	1				2			3	2															
CO5	3	1		3	2	3	1			2	3														
	-					1.4 2.6		<u>a</u> 1.4	-		-	-													

					Int	grai Univ	craity, D	uckilow						
Effect	ive from S	ession: 2	024-25											
Cours	e Code	BS506					Ti	tle of the	Course	rDNA/Imr	nunology Lat	L	ΓF	P C
Year		II					Se	mester		III		0	0 1	2 6
Pre-R	equisite	UG in Bi	ological S	cience			Co	o-requisit	e					
Cours Objec	se tives	quantitati	ve analyse on of bact	es of antig	gen-antibo	dy interac	tion. It al	so deals w	ith Molecu	ular biology	nunology like techniques o Plant and an	f isolat	ion ar	nd
Cours	e Outcome	es												
CO1	The stu	dent will	be able to	isolate pl	asmid and	l genomic	DNA and	l will lear	n to perfor	m Agarose	gel electropho	oresis o	f DN	A.
CO2	The stu	dent will	be able to	perform	quantitatio	on of DNA	, Restrict	tion digest	tion of DN	A and cloni	ng of DNA ir	n bacter	ial hc	ost.
CO3	The stu	dent will	vill be able to perform experiments related to plant and animal tissue culture.											
CO4	The stu	dent will	ill be able to explain production and characterization of products (as antibiotics) from microbes.											
CO5			vill able to explain the antigen-antibody interaction by Double Immunodiffusion method, Ouchterlony's Method, rophoresis, Western Blotting and ELISA.											
Unit No.	Title of the Unit		Content of Unit						Contac Hrs.	t Ma CC				
1 NO. 1.	Exp. 1	Isolatio	Isolation and characterization of DNA from Bacteria/ Plants /Animals							9				
1. 2.	Exp. 1 Exp. 2		volation and characterization of DNA from Bacteria/ Plants / Animals puantitative Estimation of genomic DNA: Determination of Absorption Spectra of genomic DNA								omic DNA	3		
3.	Exp. 2 Exp. 3				-				npilon sp	cua or gen		3	CC	
3. 4.	Exp. 3 Exp. 4										3	CC		
5.	Exp. 5	Prepara	eparation of competent cells and Transformation with recombinant plasmid DNA and entification of recombinants by alpha complementation.									6	cc	
6.	Exp. 6	Isolatio							lethod follo	owed by Ag	arose Gel	6	СС)-2
7.	Exp. 7			n Reaction	n and Prin	ner design	ing, PCR	amplifica	tion of ger	nomic DNA		6	СС)-2
8.	Exp. 8	Prepara	tion of pla	ant culture	e media ar	nd its steril	lization, I	n vitro ge	rmination	of seeds.		3	CC)-3
9.	Exp. 9	Initiatio	on and mai	intenance	of Callus	and suspe	nsion Cu	lture				3	CC)-3
10.	Exp. 10	Isolatio	n of lymp	hocytes fi	rom blood	samples.	<i>Invitro</i> m	aintenanc	e of cell lii	nes.		6	CC)-3
11.	Exp. 11					Purification econdary			s, Enzymes	s, Proteins, A	Antibiotics	6	СС)-4
12.	Exp. 12	To iden	tify sensit	ivity of a	ntigen & a		y double		iffusion: C	Ouchterlony'	s Method,	6	СС)-5
Refere	ence Books	- +				-					I			
			John M. W	alker "Prin	ciples and	Techniques	of Practic	alBiochem	istry" Chirik	cjian "Biotech	nology Theory	& Tecl	nnique	s"
	ph Sambrool ook of Micro		. Russell Jo	e Sambroc	k "Molecu	lar Cloning	: A Labora	atory Manu	al" William	M., Ph.D. O'	Leary Robert I	Dony Wi	ı "Pra	ctical
3. Brov	vn, TA "Gen	e cloning:	An introdu	ction"										
4. Plum	nmer David	Г., (1988),	An introdu	ction to pr	actical bioc	hemistry, 3	rd Ed., Tat	ta McGraw	-Hill Publis	hing Co. Ltd.	New Delhi, 10	9-121		
e-Lea	rning Sour	ce:												
		Course	Articulati	on Matri	x: (Mapp	oing of CC	os with P	Os and P	SOs)					
PO- P	SO	PO1	PO2	PO3	PO4		PO6	PO7		PSO1	PSO2	PSO3		PSO4
СО		101	102	105	104	105	100	10/	100	1501	1502	1303	1	504
CO1		3	3	1			3		3	1	ŀ	3	:	2
CO2		3	3	1			3		3	1		3		2
CO3		3	3	1			3		3	1		3	-	2
CO4		3	3	1			3		3	1		3		2
		1	1	1	1	1	1	1	<u> </u>					

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

CO5

Effective from Session:											
Course Code	BS511	Title of the Course	Applied Biotechnology	L	Т	Р	С				
Year	П	Semester	IV	3	1	0	4				
Pre-Requisite	UG in Biological Science	Co-requisite									
Course Objectives	with advanced knowledge of	various recent development	but very important concepts in biotechnology as well as p nts taking it to the industrial level. This course also aimed to VF, and commercial production of vaccines.								

	Course Outcomes
CO1	Understand the techniques of microbial, plant and animal cell culture.
CO2	Understand the basic mechanisms of protoplast biology, in-vitro selection of mutants, the process of plant organ development and their application in
	agriculture and horticulture.
CO3	Understand the development of transgenic plants with special acquired protective mechanisms against drought, salt stress, pathogens, herbs and development of
	edible vaccines.
CO4	Understand the cloning strategies, antigen recognition and presentation by B and T lymphocytes and their application in vaccine development.
CO5	Understand the techniques of in-vitro fertilization and embryo transfer technique, test tube babies.

Unit Contact Mapped Title of the Unit **Content of Unit** No. Hrs. СО Introduction to Introduction to Tissue and organ culture, Establishment and maintenance of callus and suspension 1 8 cultures, cellular differentiation and regulation of morphogenesis; somatic embryogenesis. CO-1 **Tissue and organ** culture Isolation and culture of protoplast, DNA uptake by protoplast, protoplast fusion and somatic hybridization; in vitro selection of mutants- mutants for salts, disease, cold, drought, herbicide and other **Isolation and culture** stress conditions; systems for somatic hybrids / cybrids; Haploid production: Androgenesis; anther and 2 8 CO-2 of protoplast microspore culture, Gynogenesis: Embryo culture and rescue in agricultural and horticultural crops, Virus free plants through meristem culture; shoot tip culture, Plant micropropagation, Somaclonal variation. Applications of Applications of transgenic plants: Developing insect resistance, disease-resistance, herbicide resistance, 3 8 CO-3 salt and submergence stress, fruit ripening, Edible vaccines. Cloning in plant and cells. transgenic plants T cell cloning and T cell cloning mechanisms of antigen recognition by T arid B lymphocytes, Application of T cell 4 8 CO-4 IVF cloning in vaccine development; In vitro Fertilization and Embryo transfer technique, test tube babies Therapeutic and Principles and strategy for developing vaccines; newer methods of vaccine preparation, sub-unit 8 5 prophylactic CO-5 vaccines, transplants, drug designing, drug targeting, microencapsulation in medicine. biotechnology **Reference Books:** H. S. Chawla "Plant Biotechnology: A Practical Approach" 1 Adrian Slater, Nigel W. Scott, Mark R. Fowler "Plant Biotechnology: The Genetic Manipulation of Plants" 2 3. Richard A. Dixon Robert A. Gonzales "Plant Cell Culture: A Practical Approach" 4. S.H. Mantell, J.A. Matthews, R.A. McKee "Principles of Plant Biotechnology: An Introduction to Genetic Engineering in Plants" 5. Angela Stafford Graham Warren "Plant Cell and Tissue Culture (Biotechnology Series)" Brown TA "Gene cloning: An Introduction" 6. 7. Old & Primrose "Principles of Gene Manipulation" Bhojwani and Razdan "Plant Tissue Culture" 8. Brown TA "Gene cloning: An introduction" 9 Old & Primrose "Principles of Gene Manipulation" 10. e-Learning Source:

Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4		
3	1		3		3		1	1		3			
3	1		3		3		1			3			
3	1		3		3		1			3			
3	1		3	3	3		1	1		3			
3	1		3		3		1			3			
	3 3 3	3 1 3 1 3 1	3 1 3 1 3 1 3 1 3 1 3 1	PO1 PO2 PO3 PO4 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3	PO1 PO2 PO3 PO4 PO5 3 1 3 3 3 3 1 3 3 3 3 1 3 3 3 3 1 3 3 3 3 1 3 3 3 3 1 3 3 3 3 1 3 3 3	PO1 PO2 PO3 PO4 PO5 PO6 3 1 3 3 3 3 3 1 3 3 3 3 3 1 3 3 3 3 3 1 3 3 3 3 3 1 3 3 3 3 3 1 3 3 3 3 3 1 3 3 3 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 1 3 3 1 1 3 1 1 3 1 3 3 3 1 1 3 1 3 3 3 1 1 3 1 3 3 3 1 1 3 1 3 3 3 1 1 3 1 3 3 3 1 1 3 1 3 3 3 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 3 1 3 3 3 1 1 3 1 3 3 1 1 3 1 3 3 1 1 3 1 3 3 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 3 1 3 3 3 1 1 1 3 1 3 3 3 1 1 1 3 1 3 3 3 1 1 1 3 1 3 3 3 1 1 1 3 1 3 3 3 1 1 1 3 1 3 3 3 1 1 1 3 1 3 3 3 1 1 1 3 1 3 3 3 1 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 PS03 3 1 3 3 1 1 3 3 3 1 3 3 1 1 3 3 3 1 3 3 1 3 </th		

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2021-2022										
Course Code	BS512	Title of the Course	Free Radical Biology	L	Т	Р	C			
Year	П	Semester	IV	3	1	0	4			
Pre-Requisite	UG in Biological Science	Co-requisite	Biotechnology							
a a: :	5	1	an understanding of free radicals, their properties, cause of	0						
Course Objectives			ted diseases. Moreover, role of antioxidants and antioxidant nt of better therapeutic intervention against free radical assoc			itralizing	g the			

	Course Outcomes									
CO1	Understand free radicals, their classification, physical and chemical properties, sources, biological significance.									
CO2	Understand the mineral biochemistry and their association with free radicals.									
CO3	Students will learn about enzymatic and non-enzymatic antioxidants, their sources, and their role in targeting various diseases.									
CO4	Students will learn the free radical-mediated oxidation of various macromolecules and their role in tissue injury.									
CO5	Reconstitution of damaged molecules and membranes and the role of de-novo enzymes in the third line of defense.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO	
1	Introduction to free radicals	Introduction to free radicals, classification, physical and chemical properties, generation of free radicals- environmental factors and biological factors, biological significance.	8	CO-1	
2	Mineral biochemistry and Free radicals	Mineral biochemistry and Free radicals: Calcium, phosphorus, agnesium. Trace elements: Iron, Iodine, Zinc, Copper.	8	CO-2	
3	Prooxidants, antioxidants, nutritional antioxidants	Prooxidants, antioxidants, nutritional antioxidants, sources of antioxidants: microbial, plant, marine. Role of free radicals in the development of diseases: Alzheimer's, Parkinson's, Cancer.	8	CO-3	
4	Role of free radicals in development of diseases	······································			
5	Defense mechanisms against free radicals	Role of antioxidants in the prevention of diseases. First line of defense: superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione reductase and xanthine oxidase, Second line of defense: glutathione (GSH), vitamin C, uric acid, albumin, bilirubin, vitamin E, carotenoids, flavonoids and ubiquinol	8	CO-5	
Referen	ce Books:				
	1. Free Radicals in Chen	nistry and Biology,			
	2. Milan Lazár Free Rad	icals in Biology and Medicine (Paperback),			
	3. Barry Halliwell, John	Gutteridge DNA & Free Radicals (Textbook Binding)by Barry Halliwell (Author),			
	4. Okezie I. Aruoma (Ed	itor) An Introduction to Free Radical Chemistry, A.F.Parsons			
e-Lear	rning Source:				

			Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4					
			1		1	3								
			1		1	3	2							
			1		1	3	2							
			1		1	3	2							
			1		1	3	2							
			Image: Constraint of the second sec	Image: second	Image: state	Image: Constraint of the second sec	PO3 PO4 PO3 PO6 PO7 PO8 PS01 1 1 1 3	1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3	1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3					

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2021-2022											
Course Code	BS513	Title of the Course	Food Biotechnology	L	Т	Р	С				
Year	П	Semester	IV	3	1	0	4				
Pre-Requisite	UG in Biological Science	Co-requisite									
Course Objectives	8	eases, dairy products, their	derstand various aspects of food biotechnology including food contamination, and associated milk-borne diseases, the impor ication of food products.	1 4	<i>.</i>	1					

	Course Outcomes								
CO1	Learn the basic concepts of food spoilage and preservation techniques.								
CO2	Learn about the chemical and microbiological examination milk constituents, milk grading, contamination and milk-borne diseases.								
CO3	Learn about the microbial flavors in the food industry.								
CO4	Understand the food laws and standards, Quality and safety assurance in the food and dairy industry, and BIS product certification and licensing quality systems.								
CO5	Determine the microorganisms and their metabolites in different foods using distinct techniques.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1	Food as substrate for Microorganisms	Food as substrate for Microorganisms; General principles underlying spoilage of foods and different methods of preservation of foods, Microbial food poisoning and infection; investigation of foodborne outbreaks, prevention and control.	8	CO-1			
2	Microbiology and spoilage						
3	Milk and milk products	Milkborne diseases; antimicrobial systems in milk; sources of contamination of milk; Chemical and microbiological examination of milk; grading of milk; Starter lactic cultures; management and preparation of starter cultures; starter defects.					
4	Microbial flavors in Dairy and Food industry	Microbial flavorsMicrobial flavors in Dairy and Food industry; Food adulteration and contamination of food with harmful microorganisms; food laws and standards; Indian and International food safety laws and standards; Quality and safety assurance in food and dairy industry; food and dairy arithmetic; standardization of					
5	Determining Microorganisms and their Products in Foods	Determining Microorganisms and their Products in Foods: Culture, Microscopic, and Sampling Methods, Conventional; SPC, Membrane Filters, Microscope colony Counts, Agar Droplets, Dry Films, Most probable Numbers (MPN), Dye- reduction, Roll Tubes, Direct, Microscopic Count (DMC), Microbiological Examination of surfaces, Air Sampling, Metabolically Injured Organisms		CO-5			
Referenc	e Books:						
1.	Food Microbiology - Fra	azier 5. Food Microbiology – J.De and De					
2.	Technology of Food pres	servation. Norman potter, CBS.					
3.	Milk and Milk Products,	Clarence Henry Eckles TMH Publ.					
4.	Food processing Biotech	nological Applications, S.S. Marwaha and Arora, AsitechPubl.					
e-Lear	ning Source:						

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	
CO1	3	1		1		2		1	3				
CO2	3	1		2		2	2	1	2				
CO3	3	1		1		2		1	3				
CO4	3	1	2	3		2		1	2				
CO5	3	1				2	1	1	1				

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21									
Course Code	BS514	Title of the Course	Seminar	L	Т	Р	C		
Year	II	Semester	IV	3	1	0	2		
Pre-Requisite	UG in Biological Science Co-requisite								
	The students will be able to summarize and present the existing data related to a specific topic in the form of a								
Course Objectives	report. Every student will present a seminar on a topic related to theoretical or experimental, advanced topic.								

	Course Outcomes							
CO1	The students will understand and interpret latest advancements through different technical papers, reports, Journals, Data sheets, books etc							
CO2	The students will inculcate the skills for literature survey and will learn to manage resources effectively.							
CO3	The students will be able to summarize the recent research and technologies in the form of review and will be able to deliver power point							
	presentations on an assigned topic.							
CO4	The students will be able to communicate his/her ideas with his peers as audience, which will enhance both oral and written communication							
	skills.							
aa-								

CO5 The students will be able to create interest to pursue lifelong learning.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	2			1	3	1	2	3	2	1	3
CO2	3					3		2		2		3
CO3	3	2	1			3		2		2	1	3
CO4	3	3	3					2	3	1		3
CO5	3					2		3		1		3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Т

Effective from Session: 2020-21									
Course Code	BS515	Title of the Course	Project Work	L	Т	Р	С		
Year	II	Semester	IV	0	0	12	8		
Pre-Requisite	UG in Biological Science	Co-requisite							
Course Objectives	research skills. To promote e	ducation and research in	pendence in experimental design and interp n biotechnology and provide academic and ental, or clinical settings for an ultimate	profes	sional	exceller	nce		

	Course Outcomes							
CO1	The students will be able to perform literature review, identify state of the art in that field.							
CO2	The students will be able to define the problem and develop synopsis of a defined research problem							
CO3	The students will be able to establish a methodology using advanced tools / techniques for solving the problem including project management							
	and finances.							
CO4	The students will be able to prepare the research report and its oral demonstrations.							
CO5	The students will be gain practical experience in project management in biotechnological industry, be able to use various techniques in							
	contemporary research for project, perform numerical analysis and interpret the results							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
C0 C01	3	2			2	3	1	3	2	1	3	3
CO2	3	2				3	1	3	2	1		3
CO3	3					3		3			3	3
CO4	3	2			1	3		3	2	1		3
CO5	3		2	3	2	3		3	2	1	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD